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Abstract—The observed degree of thermodynamic imperfection of existiig power plants is explained based
on a steady-state power plant model the irreversibility of which is due to three sources: the hot-end heat
exchanger, the cold-end heat exchanger and the heat leaking through the plant to the ambient. While
maximizing the instantaneous power output, it is shown that in addition to Curzon and Ahlborn’s optimum
temperature ratio there exists also an optimum balance between the sizes of the hot- and cold-end heat
exchangers. A graphic construction for pinpointing the optimum location of the power plant on the
absolute temperature scale is presented. The efficiency (first or second law) is maximem when the total
investment is split optimally between the external conductance and internal thermal resistance built into
the power plant. The efficiency data on existing power plants fall in the domain anticipated theoretically.
Some of the trade-offs revealed by the theory are illustrated further by the analysis of an ideal Brayton
cycle power plant.

INTRODUCTION

THE GENERATION of mechanical power is the original
mission of the science of engineering thermodynamics
and much of the heat transfer engineering prac-
ticed today. It would be easy to argue that the world
has come a long way from the early steam engines and
reciprocating machinery that got the field started. One
could also argue that the major post-Watt tech-
nological breakthroughs in power generation trig-
gered their own, new brands of power engineering.
There is of course truth in this argument, as even a
quick glance at the library shelf invites the reader to
think of the beginnings of more specialized modern
fields, for example, internal combustion engines,
turbomachinery, jet propulsion, etc. Yet I will argue
that of more fundamental importance is what links all
these developments rather than what sets them apart.
The technological developments that led to today’s
explosive growth in electrical power production are
all manifestations of a common design philosophy.
In this paper I rely on a very simple heat transfer
model in order to anticipate the degree of thermo-
dynamic irreversibility that is demonstrated by the
power plants that have been built. This theory reveals
also the existence of three fundamental trade-offs in
the design of a power plant. The greater objective of
this paper is to draw attention to the emergence of
a science of irreversible power and refrigeration
systems, as a research-active field in modern thermal
engineering. This new direction is the modern counter-
part of the Carnot-limit arguments which in the last
century gave birth to classical thermodynamics. The
field of irreversible power plants to which this paper
contributes is the result of the interaction between
classical thermodynamics and the now mature science
of heat and mass transer. It is the latter that gives the

thermodynamicist a firm grip on the irreversibilities
that plague the present and future power and refriger-
ation systems.

IRREVERSIBLE POWER PLANT MODEL

Consider the model outlined in Fig. 1. The power
plant delineated by the solid boundary operates
between the high temperature Ty and low temperature
T.. The modeling challenge consists of providing the
minimum construction detail that allows the outright
identification of the irreversible and reversible com-
partments of the power plant.

In order to see the reasoning behind some of the
features included in this drawing it is worth recalling
that in the traditional treatment of simple power plant
models {e.g. the Carnot cycle) it is tacitly assumed
that the heat engine is in perfect thermal equilibrium
with each temperature reservoir during the respective
heat transfer interactions. In reality, however, such
equilibria would require either an infinitely slow cycle
or infinitely large contact surfaces between the engine
and the reservoirs (Ty and Ty). For this reason
the existence of the finite temperature differences
{Ty~—Tuc) and (T c— Ty} is recognized as driving
forces for the instantaneous heat transfer interac-
tions Oyc and Oy

QHC = CH(TH—THC) (1}
Qe = C(Tc—To)- )

The proportionality coefficients Cyy and C; are the
hot- and cold-end thermal conductances. In heat ex-
changer design terms, for example, Cy represents
the product of the hot-end heat transfer area Ay times
the overall heat transfer coefficient based on that
area, /. Since both Cy and C, are commodities
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a temperature ratio, equation (51)

A heat transfer area

cp  specific heat at constant pressure

c, specific heat at constant volume

C.  external conductance inventory

Cy  external conductance of the hot-end
heat exchanger

¢, internal conductance

C.  external conductance of the cold-end
heat exchanger

C,  total conductance investment

B constraint

A overall heat transfer coefficient

k ratio of specific heats, ¢,/c,

] mass flow rate

M dimensionless mass flow rate, ric,/(h4)

Ny heater number of heat transfer units,
equation {52)

Ny cooler number of heat transfer units,
equation (52}

P unit cost of external conductance

p,  unit cost of internal resistance

Py high pressure

P, low pressure

Qn  heating rate

Oue  heating rate to the reversible part of the
power plant model

¢,  internal heat leak

. cooling or heat rejection rate

Q. heat rejection rate from the reversible
part of the power plant model

NOMENCLATURE

R, internal thermal resistance

Sen  entropy generation rate

T absolute temperature

Ty, high temperature

high temperature experienced by the
reversible part of the power plant model
7, low {ambient) temperature

low temperature experienced by the
reversible part of the power plant model
W power output

X external conductance (C,) allocation
ratio
¥ total conductance (C,) allocation ratio,
Greek symbols

#e  Carnot efficiency, equation (31)
i first-law efficiency, equation (29)

7y second-law efficiency, equation (30}
7 price ratio number, equation (41}
T temperature ratio, Ty/T

Te Carnot temperature ratio, Tye/Tic-

Subscripts
C reversible (Carnot) part of the power
plant model
H  high, or hotend
L low, or cold end
max maximum
opt  optimum.

Th
; Tue
i
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! w
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;
:
1
- TLC
T
T

Fii. 1. Power plant model with three sources of heat transfer
irreversibility (the power plant is delineated by the solid
boundary).

in short supply it makes sense to recognize as a con-
straint the total external conductance inventory C,

Ce=Cy+C, {3)

or, by introducing the external conductance allocation
ratio x

Cy = xC, 4
G = {1-x)Ce 8))

The heat transfer rates that cross the finite tem-
perature gaps identified above represent two sources
of irreversibility. A third source sketched in Fig. 1 is
the heat transfer rate ¢; that leaks directly through the
machine and, especially, around the power producing
compartment labeled C. In order to distinguish this
third irreversibility from the ‘external irreversibilities
due 10 (T}~ Tyue) and (T, c— T), refer to Q; as the
‘internal’ heat transfer rate (heat leak) through the
plant. There are many features of an actual power
plant that fall under the umbrella represented by @,
for example, the heat transfer lost through the wall of
a boiler or combustion chamber, the heat transfer
removed by the cooling system of an internal com-
bustion engine, and the streamwise convective heat
leak channeled towards room temperature by the
counterflow heat exchanger of a regenerative Brayton
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cycle [1]. The simplest internal heat leak model that
is consistent with the linear models, equations (1) and
), is

Qi = CG(Ty— TL) (6)

where C; is the internal conductance of the power
plant. Worth noting is that the internal heat leak
model, equation (6), was proposed first in Problem
2.2 on p. 44 of ref. [1].

To summarize the three irreversibility sources that
have already been discussed, note that the model of
Fig. 1 relies analytically on three parameters, namely
(Cy, Cp, C) or (C, x, C). The remaining power plant
compartment, which is C, is irreversibly free. The
second law of thermodynamics states that its rate of
entropy generation is zero, which means that

Owc _ Onc _

=0. 7
Toe  Tue ™

The analytical representation of Fig. 1 is completed
by the first-law statements

W= QHC_QLC (8)
QH = Qi+QHC (9)
QL = Qi+QLC (10)

where W, Oy and O, are the energy rate interactions
of the power plant as a whole, namely, the power
output, the rate of heat input and the heat rejection
rate.

TWO CONDITIONS FOR MAXIMUM POWER

Following the example set by Curzon and Ahlborn
[2], attention is focused on the power output W with
the objective of determining the conditions under
which W is maximum. These conditions, it turns out,
can be derived analytically in closed form. First, com-
bining equations (8), (7) and (5) leads to

in which the unknown now is the ratio Ty /7. From
the second law, equation (7), and equations (4) and
(5) it can be learned however that

Tic

T
— =1—-x+x—
Tc

T 2

where © and 1. are abbreviations for the actual
temperature ratio and the Carnot-compartment
temperature ratio

Ty
=T 13)

_ Tyc
Tc= T (14)

Combining equations (11) and (12) yields
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W= x(1—xC.T, <i—1>(rc—1). (15)
Tc

The above expression shows that the instantaneous
power output per unit of external conductance inven-
tory (constant C,) can be maximized in two ways.
Solving first 0 W/dtc = 0, the optimum Carnot-com-
partment temperature ratio is obtained

TC,opt = 11/2 (16)
and the corresponding power output maximum is
Woax = (1 = x)C. T (12— 1) an

It is important to note at this stage that equation (16)
is the same as the equivalent temperature ratio result
in Curzon and Ahlborn’s theory [2], even though the
latter was based on a somewhat different power plant
model. Unlike the steady-state power plant model of
Fig. 1, Curzon and Ahlborn’s model covered one full
cycle of the classical Carnot cylinder and piston
apparatus in which the quasistatically compressed or
expanded working fluid is not in thermal equilibrium
with the reservoirs 7} and, respectively, Ty. More
general treatments of the same problem have been
published by Salamon et al. [3, 4], Salamon and
Nitzan [5], and Andresen et al. [6]. The present model
and the analysis leading to equation (16) is a note-
worthy and more direct alternative for deriving equa-
tion (16). This simpler approach was pointed out by
De Vos [7].

An entirely new aspect that is brought to light by
the model of Fig. 1 is that there exists an optimum
way to allocate the C, inventory between the hot and
cold ends, such that the power output is maximized
once more. Setting the §/0x derivative of expression
(15) or (17) equal to zero yields the optimum external
conductance allocation fraction

(18)

Substituting x = X, in equation (17) gives the twice-
maximized instantaneous power output

=1
xopt - 2

Wmax,max = TIOC‘eT‘L(Tl/2 - 1) (19)

In conclusion, in order to operate at maximum
power there must be not only a ‘balance’ between the
thermodynamic temperature ratios 7 and t, equation
(16), but also a balance between the sizes of the hot-
and cold-end heat exchangers. This second obser-
vation is particularly important because it adds to an
analysis given earlier on pp. 145-147 of ref. [1], which,
relative to a model equivalent to the right half of Fig.
1, showed that an additional unit of C, induces a
greater increase in W if it is invested in the cold-end
heat exchanger. That analysis and its conclusions are
the subject of certain restrictions, which are spelled
out on p. 147 of ref. [1]. The optimum allocation rule,
equation (18), gives another view of the problem of
the most beneficial way for investing the additional
unit of C,. The choice between investing it in the
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FiG. 2. Geometric construction for locating the optimum
position of the power plant on the absolute temperature
scale.

hot-end heat exchanger as opposed to the cold end
depends on whether x is smaller than x,,, or not. If the
two heat exchangers are already optimally balanced,
X = X, then the best way to invest the additional
unit of C, is by splitting it evenly between the two heat
exchangers.

It can be noted finally that in heat transfer terms
the double act of W maximization developed in this
section is the same as choosing the optimum tem-
perature differences of the two heat exchangers. It can
be shown that when t¢ = ¢ o and x = x,, these two
temperature differences are

—T
(PrrTe) =sa-e o
TH opt
TLC - TL) Ly 172
S (i 21
( L 2( ) 20
or, after dividing equations (20) and (21)
TH - THC) 12
SHTHC) g 2
( TLC - TL opt ( )

In conclusion, the optimum end temperature differ-
ences are in the same proportion as the optimum
temperatures felt by the Carnot part of the power
plant, equation (16).

CONSTRUCTION OF THE TEMPERATURE
SCALE

The two maximum W conditions of the preceding
section are summarized most succinctly by the geo-
metric construction presenied on the left-hand side of
Fig. 2. This construction begins with the observation
that, when Ty and T, are specified, the double max-
imization of W pinpoints the location of Tyc and T¢
on the absolute temperature scale. Let the temperature
interval between Ty and absolute zero be represented
by the segment of unit length CA. On this segment
the position of the low temperature reservoir is
known {called point B), and it can be noted that the
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length of the segment BA equals T /Ty. The problem
reduces to finding the position of points G and F. The
solution is obtained by using no more-than a compass
and an unmarked ruler.

(1) Draw the unit-length circle having CA as diam-
eter, and intersect it with the horizontal line drawn
through B. Labeling the point of intersection D, recall
a basic theorem of Pythagorean geometry which states
that

(23)

in other words, that the length of segment DA is equal
to {7 /Ty) *. This new length is placed on the vertical
axis by marking point E such that

EA = DA. (24)

(2) Points G and F are located next as the mid-
points of the new segments CE and, respectively, EB,
or by estimating the arithmetic average lengths

GA = [(CA+EA)
FA = {(EA+BA).

(25
(26}

The latter are the geometric counterparts of two
relations that follow from equations (20) and (21),

namely
Tuc 1 TV
(L1
Ty opt 2 Ty
(b3l ) 7]
TH opt 2 TH TH :

The right-hand side of Fig. 2 shows the four-tem-
perature alignment produced by the geometric con-
struction unveiled on the left-hand side. It is easier to
see now that the optimum temperature differences
{(Ty—Tuc)om and (Tic— T}, are proportional to
Thcop and, respectively, Tic o, Indeed, by rotating
these temperature difference segments by 90° one can
see the emergence of two similar right triangles the
common vertex of which is at the point of absolute
zero.

@n

(28)

ONE CONDITION FOR MAXIMUM
EFFICIENCY

It remains to determine what sort of power plant
‘efficiencies’ are attainable with a design the focus of
which has been on the maximization of the instan~
taneous production of power. The discussion can be
carried out in terms of the traditional (first law)
efficiency

= 29
m= g (

or, as done in this section, in terms of the second-law
efficiency
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i
=— 30)
M e
where 5 is the Carnot efficiency associated with the
temperature reservoirs Ty and T

€Y

The second-law efficiency is known also as the rational
or exergetic efficiency of the power plant [1, 8, 9]. It
is a measure of the degree of thermodynamic irre-
versibility of the plant, that is, a measure of the depar-
ture from the fully-reversible limit represented by #c.
The range of possible values for ny; is 01 (Fig. 3).
The second-law efficiency that corresponds to the
twice maximized power output, equation (19), is
obtained by using equations (29)—(31) in combination
with equation (9) for Oy, equation (6) for ; and
equation (1) for Qyc, all subject to optimum con-
ditions (16) and (18). The resulting expression is

ol -
nn=[?5%1+f””V+1+f””] (32)

which shows that #;, depends on two parameters, the
temperature ratio T and the conductance ratio C;/C..
As one might have expected, the second-law efficiency
decreases monotonically as the internal/external con-
ductance ratio increases, i.6. as more of the heat trans-
fer input Oy is able to bypass the power producing
part of the plant.

In search of the highest possible #, one may think
of increasing C, and decreasing C;, however, both
moves are halted eventually by economic constraints.
There exists an interesting trade-off between increas-
ing C, and increasing the internal thermal resistance
R, = C !, when the total resources available for both
C, and R, are fixed. One can see that this trade-off
corresponds to a minimum value of the ratio C/C,,

’,H,max

01 ! ] T NN S B
1

FiG. 3. Theoretical and empirical second-law efficiency data
vs v = Ty/Ty {the numbers inside the circles correspond to
the numbers listed in the left-hand column of Table 1).
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which in turn corresponds to a maximum value of the
second-law efficiency ny.

Assume that in the overall cost of the power plant
C, and R, compete against one another in a cost
constraint of the type

(33)

where p. and p, are the unit costs (prices) associated
with constructing more external conductance and,
respectively, more internal resistance. Expressed in
thermal conductance units constraint (33) reads

p.C.+p. R, = constant

Q+%&=q,wmmn (34)
where C, is the total thermal conductance that could
be built with the right-hand side of equation (33).
The splitting of the total conductance inventory C,
between the actual external conductance and internal
resistance is described by the investment allocation
fraction y, which is defined by

C.=yC (3%

P

;):Ri =(1-»C. (36)

Estimating now the C;/C, ratio in which C, and p,/p.
are considered fixed

Ci P

—— 37
C. y(1—ypC? @7
it is clear that this ratio reaches a minimum at
y opt = % (38)
and that its minimum value is
Ci _ prx’; (g
(Ce)min - 4 Ct2 ) (39)

The corresponding second-law efficiency maximum is
Mipmax = (1671 +T7 VD2 4+ 1477271 (40)

in which = is the dimensionless notation for the price
ratio parameter that came to light in equation (39)

= PrlPe
ct

@D

What has been achieved in equation (40) is a means
to anticipate the ceiling value of #;; as a function of
7 and the additional parameter #n. The latter is not
expected to vary much in any given technological age,
therefore, it can be held constant while drawing each
of the curves shown in Fig. 3. The second-law
efficiency increases slowly as the temperature ratio
increases. Even though, in principle, the entire 0-1
domain is accessible to 7y, the theory on which
equation (40) is based suggests that the observed
efficiencies of power plants must fall in the area below
the © = 0 curve (recall that # is a positive finite num-
ber). The curve drawn for = = 0 represents the limit
of infinitely plentiful internal resistance, for which
equation (40) reduces to
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Table 1. The observed efficiencies of ten power plants

Symbol on T Ty Ty
Fig. 3 Power plant °C) °C) T e e Hy
(1) West Thurrock (U.K.), 1962 conventional coal fired 25 565 2.82 0.64 0.36 0.56
steam plant {10}
2) CANDU (Canada), PHW nuclear reactor [11} 25 300 1.92 (.48 0.3 0.63
3) Larderello (Italy), geothermal steam plant [2,12] 80 250 1.48 0.32 0.16 0.5
4 193640 central steam power stations in the UK. [10] 25 425 2.35 0.57 0.28 .49
5 Calder Hall (U.K.), 1956 nuclear reactor [10] 25 310 1.96 .49 0.19 0.39
(6) Dungeness ‘A’ (U.K.), 1965 nuclear reactor [10} 25 390 223 0.55 0.33 0.60
N 1956 steam power plant in the U.S. A, {10} 25 650 3.1 0.68 0.40 0.59
(8) 1949 combined cycle (steam and mercury) plant in 25 510 2.63 0.62 0.34 0.55
the U.S.A. [10]
()] 1944 closed cycle gas turbine in Switzerland [10] 25 690 3.23 0.69 0.32 0.46
(10) 25 680 3.20

1950 closed cycle gas turbine in France [10]

0.34 0.49

,tl_/’l

T “2)

N1t max (7! = 0) =
This limit is equivalent to the domain covered by
Curzon and Ahlborn’s theory [2], even though the
second-law efficiency formula (42) does not appear in
ref. [2]. Combining equation (42) with equation (30)
it is easy to rederive Curzon and Ahlborn’s first-law
efficiency formula

— 172

m=1—-1 43)

I used the opportunity offered by the present theory
to survey some of the second-law efficiency infor-
mation available on power plants built during the past
four decades (Table 1 and Fig. 3). With only one
exception, the empirical #;; values fall under the n = 0
curve, that is, in a way that agrees with the present
theory. This finding suggests that the simple model of
Fig. 1 captures the most essential features of an actual
power plant, that is, of a power plant that operates
irreversibly.

Another interesting observation is that the second-
law efficiencies of Table 1 correspond to a remarkably
narrow band of n values. The average n value is
approximately 0.01, which according to equation
(39) corresponds to a C/C, ratio of about 0.04. If, in
addition, one regards © ~ 2.5 as representative of the
7 values of the power plants of Table 1, one can learn
that the 0,/Qy, ratio is roughly 12%.

This ‘representative average’ numerical example
can be continued by asking the question of how (in
what proportions) the three irreversibility mech-
anisms of Fig. 1 contribute to the aggregate irre-
versibility of the power plant. It turns out that when
7~ 2.5 and C,/C, ~ 0.04 the internal resistance con-
tributes 40%, the hot-end external conductance 23%
and the cold-end external conductance 37% of the
overall entropy generation rate of the power plant.

AN IDEAL BRAYTON CYCLE EXAMPLE

The preceding conclusions were made to a large
extent visible by the simplicity of the power plant
model adopted in Fig. 1. More realistic power plant

models—even the highly idealized ones—require
more complex analytical and numerical work that
tends to obscure the message conveyed by the pre-
ceding analysis. The mission of this section is to dem-
onstrate that some of these trade-offs can be redis-
covered in more realistic, textbook-type, power plant
descriptions.

Consider for this purpose the ideal Brayton cycle
sketched in Fig. 4. The working fluid (ideal gas with
constant c,) is heated at constant pressure (Py) as it
flows from the compressor outlet (1) to the turbine
inlet (2). The compressor and the turbine process the
fluid reversibly and adiabatically, i.e. isentropically.
Between the turbine outlet (3) and the compressor
inlet (4} the working fluid is cooled at constant pres-
sure (P.). The power plant is sandwiched between two
temperature reservoirs, Ty and T, meaning that the
maximum working fluid temperature can never exceed
Ty, and that the minimum working fluid temperature
can never fall below 7. The Brayton cycle is said to
be ‘ideal’ (or endoreversible) because the only irre-
versibilities accounted for by this model are external
to the space occupied by the working fluid itself. These
irreversibilities are associated with the heat transfer
from Ty to the heater tube (1) — (2), and with the
heat transfer from the cooler (3) — (4) to the low-
temperature reservoir (7).

To maximize the instantaneous power output W is
to minimize the entropy generation rate for the entire
installation {cf. the Gouy-Stodola theorem on p. 24
of ref. {1])

Sy = thicy (T};LTA _n %HT] ) 4
Note that this expression comes from writing
where
QO =mco(Ts—T,) and Oy = nic(T,—T)).
(46)

Alternatively, the overall entropy generation rate,
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FiG. 4. Ideal Brayton cycle optimized for maximum power output (this figure was drawn to scale for the
case Ty = 800 K, Ty = 300 K and the Ny and N, values listed inside each cycle).

equation {44), may be derived by adding the con-
tributions made by the two components that operate
irreversibly

T,

, T,—T,
Sgen.(r,,)—(heater) = MCp (ln—i,-]— - T) @7

. 5 r, T,-T,
Sgen,(cocler)—(TL) = MCp (kl“f; - “T M (48)

The variation of the four corner temperatures
T\,..., T,is constrained by four additional relations

TH - T{ - NH
ToT,=¢ @9)
T3 - T L N,
e 2t VL 5
T T, (50)
T, T,
7.°7, = a, constant 61)

where the N’s represent the ‘number of heat transfer
units’ of each heat exchanger
(h4),

_ Gy

Y L
wicp ey

S {52)
Temperature ratio {S1) depends only on the pressure
ratio, @ = (Py/P)*~ V% where k = ¢p/c,. Finally, as
a measure of the overall size of the heat exchanger
equipment it is assumed that the total (kd) is fixed,
which is analogous to equation (3). In the present
terminology the (hA4) constraint reads

()
e 63

i

NH +NL =

where the flow rate m is not necessarily constant.

The overall entropy generation rate, equation (44),
can be reshaped according to equations (49)-(53), to
read

S st [(1)° (1)
(hd) (A | \aTy aTy

. -1 (e —1) '

Vg1

(54

This expression shows that S,., decreases mono-
tonically as the pressure ratio (@) increases, i.e. as
the cycle expands vertically and eliminates the irre-
versibility plagued temperature gaps (note also that
S¢en becomes zero in the limit @ = Ty/T;). Next, one
can see that S,., depends on both Ny and Ny, however
only one of these parameters constitutes a degree of
freedom (see equation (53)). It can be shown that the
minimization of S, with respect to this single degree
of freedom yields Ny = Ny, in other words, that

(hA)siop = (A o = S(hA) (55)

S womin TH 2 TH el i
= G) G e ()
(56)

where M is the dimensionless shorthand for the mass
flow rate, M = mep/(hA). The same group (M) may
be viewed as the inverse of the number of heat transfer
units of the two heat exchangers combined. At large
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flow rates (M » 1), the entropy gencration rate
minimum, equation (56), is practically independent of
M, as the product M tanh (1/4M) approaches 1/4.
On the other hand, S,., ., decreases proportionally
with M when M « 1. 1Inconclusion, there is a thermo-
dynamic incentive for slowing down the working
fluid as it bathes the two heat exchanger surfaces. In
the limit M = 0 the extreme corners of the Brayton
cycle match the imposed fuel and ambient tempera-
tures, 7, = Ty and T, = T,.

Either in terms of (4} or number of heat transfer
units, the optimum heat exchanger size distribution,
equation {53), verifies the conclusion reached earlier
on the basis of a much simpler power plant model,
equation (18). The meaning of this design rule is iHus-
trated in the remainder of Fig. 4. At the optimum, the
arithmetic average temperature of the heater and the
cooler depend solely on the imposed temperatures and
pressures

(Ty 4+ Ty)op = Tu+aly (37)

(To4 T = Tt Ty (58)
This conclusion matches in spirit the earlier result that
the power cycle must occupy a certain position on
the temperature scale between Ty and T, (Fig. 2).
Regardless of whether equation (55) applies, the heat
engine efficiency is a function of P,/P_ only

W 1 ,PL )(f(m 134 I TL
"=, (P ST

Therefore, although the cycle efficiency is independent
of how (h4) is distributed among the two heat ex-
changers, the entropy generation rate per unit (44)
is minimized and the power output maximized when
the cycle is positioned between Ty and 7y in the
manner indicated by equations (57) and (58). The
Brayton cycle occupies an increasingly taller area
on the 7—s diagram as M decreases, i.e. the number of
heat transfer units of both heat exchangers increase.

(39

CONCLUSION

This study showed that the degree of thermo-
dynamic imperfection of power plants can be
anticipated based on a very simple model that retains
only three sources of heat transfer irreversibility : the
hot-end heat exchanger, the cold-end heat exchanger
and the direct heat leak to the ambient. If the designer
maximizes the instantaneous power output then there
are two important trade-offs to keep in mind, first,

A. Besan

Curzon and Ahlborn’s optimum Carnot temperaturc
ratio and, second, the optimum balance between the
sizes of the hot- and cold-end heat exchangers. Therc
is also an interesting geometric construction for locat-
ing the optimum position of the power plant on the
absolute temperature scale (Fig. 2). The cfficiency of
the power plant model is maximized if the available
investment is distributed optimally between the jobs of
building external conductance and internal resistance.
Overall, the study draws attention to the oppor-
tunity for using the most basic heat transfer modelling
and analysis in order to describe the irreversible oper-
ation of admittedly complicated engineering systems.
This approach is highlighted in a new treatise and
graduate-level text on modern engineering thermo-
dynamics [13].
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Theory of heat transfer-irreversible power plants

THEORIE D’IRREVERSIBILITE DU TRANSFERT THERMIQUE APPLIQUEE A UN
EQUIPEMENT ENERGETIQUE

Résumé—Le degré observé d’imperfection thermodynamique d’une installation est expliqué & partir d’un
modéle en tenant compte des irréversibilités dues & trois sources : le coté chaud de I'échangeur, le cote froid
et la chaleur se perdant dans I'ambiance. En optimisant la puissance instantanée délivrée, on montre qu’en
plus du rapport de température optimum de Curzon et Ahlborn, il existe aussi un équilibre optimum entre
les dimensions des extrémités chaude et froide de ’échangeur. On présente une construction graphique de
la position optimale de I"équipement énergétique dans I'échelle de température absolue. L’efficacité est
maximale quand I'investissement total est sépar¢ de fagon optimale entre la conductance externe et la
résistance thermique interne. Les données sur Pefficacité d’unités existantes tombent dans le domaine prévu
théoriquement. Quelques points révélés par la théorie sont illustrés 4 travers 'analyse d’une installation
fonctionnant selon un cycle idéal de Brayton.

THEORIE DER IRREVERSIBLEN WARMEUBERTRAGUNG IN KRAFTWERKEN

Zusammenfassung—Der durch irreversible Vorginge reduzierte Wirkungsgrad von Kraftwerken wird
anhand eines stationdren Modells untersucht. Es lassen sich dabei drei Quellen fiir Irreversibilitdten
feststellen : die Wirmetauscher am heiBen und kalten Ende der Anlage sowie der Wirmeverlust der Anlage
an die Umgebung. Zur Optimierung der momentanen Energieausbeute wurde von Curzon und Ahiborn ein
optimales Temperaturverhiltnis ermittelt. Es wird gezeigt, daB zwischen der GréBe der Warmetauscher
am heiBlen und kalten Ende ebenfalls ein optimales Verhiltnis besteht. Ein Diagramm zur grafischen
Ermittlung der optimalen Lage von Kraftwerken beziiglich der absoluten Temperaturskala wird vorgestelit.
Der Wirkungsgrad (energetisch oder exergetisch) wird dann maximal, wenn die gesamten Anlagekosten
optimal zwischen der Wirmeddmmung nach auBlen und dem inneren thermischen Widerstand aufgeteilt
werden. Die Daten iiber den Wirkungsgrad von bestehenden Kraftwerken fallen in den Bereich der Werte,
die aufgrund der theoretischen Berechnungen zu erwarten sind. Einige der Verbesserungs-Méglichkeiten,
die aufgrund der Theorie aufgedeckt worden sind, werden anhand der Analyse eines idealen Kraftwerks
nach dem Brayton-ProzeB verdeutlicht.

TEOPH S SHEPTOYCTAHOBKH HA OCHOBE HEOBPATUMBIX IMMTPOLIECCOB ITEPEHOCA

Anvoramas-—TepMOIUMHAMHYECKAN HEHACANBLHOCTE CYLIECTBYIOUMX JHEPrOYCTAHOBOK TPAKTYETCA Hi
OCHOBC MOJCIH CTAalHOHADHOH 3HEPrOYCTAHOBKH, HeOODAaTHMBIH XapakTep HPOHECCOB B KOTOPOH
o6s3aH TpeM NMPHYHHAM: TEIIOOOMEHY C HArpeBaTeNieM, ¢ XOJMOMHILHHKOM M YTEUKAaM TeIUia B OKpy-
xaromyio cpeay. [TyreM MakcHMH3aUMH 3HAYCHWA BBIXOHHON MTHOBEHHOM MOLIHOCTH MOKA43aHO, YTO
HAPAAY ¢ ONTHMAJIBHBIM OTHOMIeHHeM Temnepatyp Kepaona 1 AnpGopHa cymecTByeT Takke onTuMa-
JIbHOE OTHOLIEHHE Pa3MEPOB Harpepareis ¥ XoJoquibuuka. Paspaboran rpadmyecknit MeTon s onpe-
Jie7IeHHs ONTHMAJIGHOTO PaCToNOXEHHs JHEProyCTaHOBKM Ha abGcomoTHolt wxane Temnepatyp. KITJT
(nepBuiil WM BTOPO# 3aKOHBI) MaKCHMAJIEH, KOTA CYMMAapHBIi BKJIaJl ONTHMAJILHO Pacnpeleiet Mexay
BHEIUHER TEIUIONPOBOAHOCTBIO H BHYTPEHHHM TCIUIOBEIM CONPOTHBJICHHEM, BCTPOSHHBIM B JHEPrOyCTa-
sosxy. Hannpie no KITJI umerommxcst 3HEProycTaHOBOK COBOANAIOT ¢ MPEACKA3AHHBIMIA TEOPCTHICCKH.
HexoTopeie noporosbie 3HaYeHWH, PacCYMTAHHBIE TEOPETHYECKH, WLTIOCTPHPYIOTCA HA HACAIBLHOM
MalMHe ¢ nuKioM BpaiiTona.
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