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Abstract---The observed degree of ~e~od~am~c im~rf~tion of existing power plants is explained based 
on a steady-site power plant model the irreversibility of which is due to three sources : the hot-end heat 
exchanger, the cold-end heat exchanger and the heat leaking through the plant to the ambient. While 
maximizing the instantaneous power output, it is shown that in addition to CWZOII and Ahlbom’s optimum 
temperature ratio there exists also an optimum balance between the sixes of the hot- and cold-end heat 
exchangers. A graphic construction for pin~in~ng the optimum location of the power plant on the 
absoIute temperature scale is presented, The efftciency (first or second law) is maximum when the total. 
investment is split optimally between the external conductance and internal thermal resistance built into 
the power plant. The efficiency data on existing power plants fall in the domain anticipated theoretically. 
Some of the trade-offs revealed by the theory are illustrated further by the analysis of an ideal Brayton 

cycle power plant. 

iNTRODUGTiON 

THE ~E~~~TION of mecha~cal Rower is the original 
mission of the science of engineering the~od~a~cs 
and much of the heat transfer engineering prac- 
ticed today. It would be easy to argue that the world 
has come a long way from the early steam engines and 
reciprocating machinery that got the field started. One 
could also argue that the major post-Watt tech- 
nological breakthroughs in power generation trig- 
gered their own, new brands of power engineering. 
There is of course truth in this argnment, as even a 
quick glance at the library shelf invites the reader to 
think of the ~ginnings of more specialized modern 
fields, for example, internal combustion engines, 
turbomachinery, jet propulsion, etc. Yet I will argue 
that of more fundamental importance is what links all 
these developments rather than what sets them apart. 
The technological developments that led to today’s 
explosive growth in electrical power production are 
all manifestations of a common design philosophy. 

In this paper I rely on a very simple heat transfer 
model in order to anticipate the degree of thermo- 
dynamic irreversibility that is demonstrated by the 
power plants that have been built. This theory reveals 
also the existence of three fundamental trade-offs in 
the design of a power plant. The greater objective of 
this paper is to draw attention to the emergence of 
a science of irreversible power and refrigeration 
systems, as a research-active tieId in modern thermal 
engineering. This new direction is the modern counter- 
part of the Carnot-limit arguments which in the last 
century gave birth to classical thermodynamics. The 
field of irreversible power plants to which this paper 
contributes is the result of the interaction between 
classical thermodynamics and the now mature science 
of heat and mass transer. It is the latter that gives the 

the~~dynami~st a fhm grip on the irreversibilities 
that plague the present and future power and refriger- 
ation systems. 

IRREVERS~S~E POWER PLANT MODEL 

Consider the model outlined in Fig. 1. The power 
plant delineated by the solid boundary operates 
between the high temperature TH and low temperature 
TL. The modeling challenge consists of providing the 
minimum construction detail that allows the outright 
identification of the irreversible and reversible com- 
partments of the power plant. 

In order to see the reasoning behind some of the 
features included in this drawing it is worth recalling 
that in the traditional treatment of simple power plant 
models (e.g. the Carnot cycle) it is tacitly assumed 
that the heat engine is in perfect thermal eq~lib~um 
with each temperature reservoir during the respective 
heat transfer interactions. In reality, however, such 
equilibria would require either an infinitely slow cycle 
or infinitely large contact surfaces between the engine 
and the reservoirs (Tu and TL). For this reason 
the existence of the finite temperature differences 
(Tu - ?‘,&l and fTLc- TL) is recognized as driving 
forces for the instantaneous heat transfer interac- 
tions eHc and QLf. 

L)wc = GG% - THC) (1) 

QLC = G.f~r,c - FL). I3 

The propo~ionality coefficients Cu and C, are the 
hot- and cold-end thermal conductances. In heat ex- 
changer design terms, for example, Cn represents 
the product of the hot-end heat transfer area Au times 
the overall heat transfer coefficient based on that 
area, &u. Since both C, and CL are commodities 
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NOMENCLATURE 

; 
temperature ratio, equation (5 1) 4 internal thermal resistance 
heat transfer area S,,” entropy generation rate 

c P specific heat at constant pressure T absolute temperature 

:e 
specific heat at constant volume rri high tempe~ture 
external conductance inventory T nf 

C 
high temperature experienced by the 

‘tt external conductance of the hot-end 
heat exchanger 

reversible part of the power plant model 
r,. 

G internal conductance 
low (ambient) temperature 

T,,. 
CL. external conductance of the cold-end 

low temperature experienced by the 

heat exchanger i& 
reversible part of the power plant model 
power output 

G total conductance investment .Y external conductance (C,) allocation 
constraint ratio 

!a overall heat transfer coefficient J total conductance (C,) aliiocation ratio. 
h- ratio of speciiic heats, c,;t;~ 
& mass flow rate 
M dimensionless mass flow rate, ~~~/(~~) Greek symbols 
Wi heater number of heat transfer units, Vi- Carnot efficiency, equation (31) 

equation (52) sr first-law efficiency, equation (29) 
4. cooler number of heat transfer units, %I second-law efficiency, equation (30) 

equation (52) n price ratio number, equation (41) 

PC unit cost of external conductance 5 temperature ratio, &Jr,_ 

PI unit cost of internal resistance r< Carnot temperature ratio, I,,./r, (.. 
PM high pressure 

2; low pressure 
heating rate 

&K 

Subscripts 
heating rate to the reversible part of the c reversible (earshot) part of the power 
power plant mode1 

Qi 

plant model 
internal heat Leak H 

QL 

high, or hot end 
cooling or heat rejection rate L Iow, or cold end 

&. heat rejection rate from the reversible max ~naximum 
part of the power plant model opt optimum. 

FIG. 1. Power plant mode1 with three sources of heat transfer 
irreversibility (the power plant is delineated by the solid 

boundary). 

in short supply it makes sense to recognize as a con- 
straint the total external conductance inventory C, 

cc = cn -i_ c’,, (3) 

or, by introducing the external conductance allocation 
ratio _Y 

CN = SC; et 

c, = (I -.r)C,. (5j 

The heat transfer rates that cross the finite tem- 
perature gaps ~dent~~ed above represent two sources 
of irreversibility. A third source sketched in Fig. 1 is 
the heat transfer rate & that leaks directly through the 
machine and, especially, around the power producing 
compartment labeled C. In order to distinguish this 
third irreversibility from the “external’ irreversibihties 
due to (Tn - T,,,) and (T,,c- 7;): refer to 0, as the 
‘internal’ heat transfer rate (heat leak) through the 
plant. There are many features of an actual power 
plant that fall under the umbrella represented by Qi3 
for example, the heat transfer lost through the wall of 
a boiIer or combustion chamber, the heat transfer 
removed by the cooling system of an internal com- 
bustion engine, and the streamwise convective heat 
leak channeled towards room temperature by the 
counte&ow heat exchanger of a regenerative &-ayton 
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cycle [l]. The simplest internal heat leak model that 
is consistent with the linear models, equations (1) and 

(2) is 

Qi = Ci(TH-- TJ (6) 

where Ci is the internal conductance of the power 
plant. Worth noting is that the internal heat leak 
model, equation (6), was proposed first in Problem 
2.2 on p. 44 of ref. [l]. 

To summarize the three irreversibility sources that 
have already been discussed, note that the model of 
Fig. 1 relies analytically on three parameters, namely 
(C,, CL, C,) or (Ce,x, Ci). The remaining power plant 
compartment, which is C, is irreversibly free. The 
second law of thermodynamics states that its rate of 
entropy generation is zero, which means that 

(7) 

The analytical representation of Fig. 1 is completed 
by the first-law statements 

m= &c-&c (8) 

OH= C2i+&C (9) 

QL= Oi+QLC (10) 

where I@, & and & are the energy rate interactions 
of the power plant as a whole, namely, the power 
output, the rate of heat input and the heat rejection 
rate. 

TWO CONDITIONS FOR MAXIMUM POWER 

Following the example set by Curzon and Ahlbom 
[2], attention is focused on the power output #‘with 
the objective of determining the conditions under 
which I@ is maximum. These conditions, it turns out, 
can be derived analytically in closed form. First, com- 
bining equations (8) (7) and (5) leads to 

I@= (I-x)C.T&-1)($-l) (11) 

in which the unknown now is the ratio TLc/TL. From 
the second law, equation (7), and equations (4) and 
(5) it can be learned however that 

T 2s= l-x+xL 
TI. TC 

(12) 

where r and zc are abbreviations for the actual 
temperature ratio and the Camot-compartment 
temperature ratio 

(13) 

T zc=c. 
T (14) 

IX 

Combining equations (11) and (12) yields 

I@ = x(1 -x)C,T, 
( 1 

k-1 (zc-1). (15) 

The above expression shows that the instantaneous 
power output per unit of external conductance inven- 
tory (constant CJ can be maximized in two ways. 
Solving first a@‘/&, = 0, the optimum Carnot-com- 
partment temperature ratio is obtained 

‘t C,opt = r l/2 (16) 

and the corresponding power output maximum is 

@ln,X = x(1 --x)C,T,(z”*- l)*. (17) 

It is important to note at this stage that equation (16) 
is the same as the equivalent temperature ratio result 
in Curzon and Ahlborn’s theory [2], even though the 
latter was based on a somewhat different power plant 
model. Unlike the steady-state power plant model of 
Fig. 1, Curzon and Ahlbom’s model covered one full 
cycle of the classical Camot cylinder and piston 
apparatus in which the quasistatically compressed or 
expanded working fluid is not in thermal equilibrium 
with the reservoirs TL and, respectively, TH. More 
general treatments of the same problem have been 
published by Salamon et al. [3, 41, Salamon and 
Nitzan [5], and Andresen et al. [6]. The present model 
and the analysis leading to equation (16) is a note- 
worthy and more direct alternative for deriving equa- 
tion (16). This simpler approach was pointed out by 
De Vos [7]. 

An entirely new aspect that is brought to light by 
the model of Fig. 1 is that there exists an optimum 
way to allocate the C, inventory between the hot and 
cold ends, such that the power output is maximized 
once more. Setting the a/ax derivative of expression 
(15) or (17) equal to zero yields the optimum external 
conductance allocation fraction 

1 X,&X = 2. (18) 

Substituting x = x0,, in equation (17) gives the twice- 
maximized instantaneous power output 

I+‘m,,,,,, = $CeTL(z”* - 1). (19) 

In conclusion, in order to operate at maximum 
power there must be not only a ‘balance’ between the 
thermodynamic temperature ratios rc and r, equation 
(16), but also a balance between the sizes of the hot- 
and cold-end heat exchangers. This second obser- 
vation is particularly important because it adds to an 
analysis given earlier on pp. 145-147 of ref. [l], which, 
relative to a model equivalent to the right half of Fig. 
1, showed that an additional unit of C, induces a 
greater increase in w if it is invested in the cold-end 
heat exchanger. That analysis and its conclusions are 
the subject of certain restrictions, which are spelled 
out on p. 147 of ref. [I]. The optimum allocation rule, 
equation (18) gives another view of the problem of 
the most beneficial way for investing the additional 
unit of C,. The choice between investing it in the 
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FIG. 2. Geometric construction for locating the optimum 
position of the power plant on the absolute temperature 

scale. 

hot-end heat exchanger as opposed to the cold end 
depends on whether x is smaller than xopt or not. If the 
two heat exchangers are already optimally baIanced, 

X = .Xopt, then the best way to invest the additional 
unit of C, is by splitting it evenly between the two heat 
exchangers. 

It can be noted finally that in heat transfer terms 
the double act of I# maximization developed in this 
section is the same as choosing the optimum tem- 
perature differences of the two heat exchangers. It can 
be shown that when zc = zc,Opl and x = xapt these two 
temperature differences arc 

/m m \ 
(-‘q!!?) = 4(l_z-““) (20) 

or, after dividing equations (20) and (21) 

(22) 

In conclusion, the optimum end temperature differ- 
ences are in the same proportion as the optimum 
temperatures felt by the Carnot part of the power 
plant, equation (16). 

CONSTRUCTION OF THE TEMPERATURE 

SCALE 

The two maximum ri/ conditions of the preceding 
section are summarized most succinctly by the geo- 
metric construction presented on the left-hand side of 
Fig. 2. This construction begins with the observation 
that, when T, and TL are specified, the double max- 
imization of I@ pinpoints the location of T,, and TLC 
on the absolute temperature scale. Let the temperature 
interval between T, and absolute zero be represented 
by the segment of unit length CA. On this segment 
the position of the low temperature reservoir is 
known (calfed point B). and it can be noted that the 

length of the segment BA equals TLiTH. The problem 
reduces to finding the position of points G and I?. The 
solution is obtained by using no more.than a compass 
and an unmarked ruler. 

(1) Draw the unit-length circle having CA as diam- 
eter, and intersect it with the horizontal line drawn 
through B. Labeling the point of intersection D, recall 
a basic theorem of Pythagorean geometry which states 
that 

gp& = P? 
CA 

(23) 

in other words, that the length of segment DA is equal 
to (TJTH) I!'. This new length is placed on the vertical 
axis by marking point E such that 

EA = DA. (24) 

(2) Points G and F are located next as the mid- 
points of the new segments CE and, respectively, EB, 
or by estimating the arithmetic average lengths 

GA = :(CA+EA) (25) 
-._ 

FA = $(EA+ BA). (26) 

The latter are the geometric counterparts of two 
relations that follow from equations (20) and (21) 
namely 

The right-hand side of Fig. 2 shows the four-tem- 
perature alignment produced by the geometric con- 
struction unveiled on the left-hand side. It is easier to 
see now that the optimum temperature differences 

(r,, - 7;1C)apt and (r,, - TL)opt are proportional to 
T HC,opt and, respectively, TL(.,opr. Indeed, by rotating 
these temperature difference segments by 90’ one can 
see the emergence of two similar right triangles the 
common vertex of which is at the point of absolute 

zero. 

ONE CONDITION FOR MAXIMUM 

EFFICIENCY 

It remains to determine what sort of power plant 
‘efhciencies’ are attainable with a design the focus of 
which has been on the maximization of the instan- 
taneous production of power. The discussion can be 
carried out in terms of the traditional (first law) 
efficiency 

q,= -Y 
QH 

(29) 

or, as done in this section, in terms of the second-law 
efficiency 
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%I = $ 

where qc is the Camot efficiency associated with the 
temperature reservoirs TH and TL 

r/c= 1-F. 
H 

(31) 

The second-law efficiency is known also as the rational 
or exergetic efficiency of the power plant [I, 8, 91. It 
is a measure of the degree of the~od~~i~ irre- 
versibility of the plant, that is, a measure of the depar- 
ture from the fully-reversible limit represented by qc. 
The range of possible values for ql, is O-l (Fig. 3). 

The second-law efficiency that corresponds to the 
twice maximized power output, equation (19), is 
obtained by using equations (29)-(33) in combination 
with equation (9) for &, equation (6) for Qi and 
equation (1) for QHC, all subject to optimum con- 
ditions (16) and (18). The resulting expression is 

[ 

ci qrI= 4~(1+7-“‘)*+1+T-“2 
e 1 

-1 
(32) 

which shows that ?I1 depends on two parameters, the 
temperature ratio z and the conductance ratio CJC,. 
As one might have expected, the second-law efficiency 
decreases monotonically as the internal/external con- 
ductance ratio increases, i.e. as more of the heat trans- 
fer input & is able to bypass the power producing 
part of the plant. 

In search of the highest possible ulr one may think 
of increasing C, and decreasing Ci, however, both 
moves are halted eventually by economic constraints. 
There exists an interesting trade-off between increas- 
ing C, and increasing the internal thermal resistance 
Ri = CT ‘, when the total resources available for both 
C, and Ri are fixed. One can see that this trade-off 
corresponds to a minimum value of the ratio CJC,., 

l[ I 

t 

0.1 I I I I,,,, 
1 10 

7 

FIG. 3. Theoretical and empirical second-law efficiency data 
vs t = T,/T, (the numbers inside the circles correspond to 

the numbers listed in the left-hand column of Table 1). 

which in turn corresponds to a maximum value of the 
second-law efficiency qu. 

Assume that in the overall cost of the power plant 
C, and Ri compete against one another in a cost 
constraint of the type 

p,C, +pr Ri = constant (33) 

where pc and pr are the unit costs (prices) associated 
with constructing more external conductance and, 
respectively, more internal resistance. Expressed in 
thermal conductance units constraint (33) reads 

C, f i Ri = C,, constant (34) 

where C, is the total thermal conductance that could 
be built with the ~ght-hand side of equation (33). 
The splitting of the totd conductance inventory C, 
between the actual external conductance and internal 
resistance is described by the investment allocation 
fraction y, which is defined by 

G = YC, (35) 

E Ri = (1 -Y)C,. (36) 
PC 

Estimating now the Ci/C, ratio in which C, and p,/p, 
are considered fixed 

ci Pr 
c, = Y(l -Y)PeC 

(37) 

it is clear that this ratio reaches a minimum at 

1 Y,,, = 2 (38) 

and that its minimum value is 

G 

0 C, min = ,p!& C? * 
(39) 

The corresponding second-law efficiency maximum is 

rlI,max = [16n(l+z-“2)2+1+2-“2]-’ (40) 

in which K is the dimensionless notation for the price 
ratio parameter that came to light in equation (39) 

What has been achieved in equation (40) is a means 
to anticipate the ceiling value of qrl as a function of 
z and the additional parameter x. The latter is not 
expected to vary much in any given technoiogical age, 
therefore, it can be held constant while drawing each 
of the curves shown in Fig. 3. The second-law 
efficiency increases slowly as the temperature ratio 
increases. Even though, in principle, the entire O-1 
domain is accessible to qrr, the theory on which 
equation (40) is based suggests that the observed 
efficiencies of power plants must fall in the area below 
the ‘lt = 0 curve (recall that z is a positive finite num- 
ber). The curve drawn for x = 0 represents the limit 
of infinitely plentiful internal resistance, for which 
equation (40) reduces to 
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Table 1. The observed efficiencies of ten power plants 

Symbol on 
Fig. 3 Power plant 

-. “_. .-.. -_______ .---.-- .” “. . ..--- ~~___ 

(1) West Thurrock (U.K.), 1962 conventional coal fired 
steam plant [lo] 

(2) CANDU (Canada), PHW nuclear reactor [l I] 
(3) Larderello (Italy), geothermal steam plant [2,12] 
(4) 193&40 central steam power stations in the U.K. [lo] 
(5) Calder Hall (U.K.), 1956 nuclear reactor [IO] 

I;; 
Dungeness ‘A’ (U.K.), 1965 nuclear reactor [lo] 
1956 steam power plant in the U.S.A. [lo] 

(8) 1949 combined cycle (steam and mercury) plant in 
the U.S.A. [lo] 

(9) 1944 closed cycle gas turbine in Switzerland [IO] 
(10) 1950 closed cycle gas turbine in France [IO] 

This limit is equivalent to the domain covered by 
Curzon and Ahlborn’s theory [2], even though the 
second-law efficiency formula (42) does not appear in 
ref. [2]. Combining equation (42) with equation (30) 
it is easy to rederive Curzon and Ahlborn’s first-law 
efficiency formula 

‘1, ZZ 1 -t- ‘12. (43) 

I used the opportunity offered by the present theory 
to survey some of the second-law efficiency infor- 
mation available on power plants built during the past 
four decades (Table 1 and Fig. 3). With only one 
exception, the empirical vrI values fall under the x = 0 
curve, that is, in a way that agrees with the present 
theory. This finding suggests that the simple model of 
Fig. 1 captures the most essential features of an actual 
power plant, that is, of a power plant that operates 
irreversibly. 

Another interesting observation is that the second- 
law efliciencies of Table 1 correspond to a remarkably 
narrow band of n values. The average 7~ value is 
approximately 0.01, which according to equation 
(39) corresponds to a CJC, ratio of about 0.04. If, in 
addition, one regards z - 2.5 as representative of the 
T values of the power plants of Table 1, one can learn 
that the &/& ratio is roughly 12%. 

This ‘representative average’ numerical example 
can be continued by asking the question of how (in 
what proportions) the three irreversibility mech- 
anisms of Fig. 1 contribute to the aggregate irre- 
versibility of the power plant. It turns out that when 
z N 2.5 and C,jC, - 0.04 the internal resistance con- 
tributes 40%, the hot-end external conductance 23% 
and the cold-end external conductance 37% of the 
overall entropy generation rate of the power plant. 

AN IDEAL BRAYTON CYCLE EXAMPLE 

The preceding conclusions were made to a large 
extent visible by the simplicity of the power plant 
model adopted in Fig. 1. More realistic power plant 

25 

565 2.82 0.64 

300 1.92 0.48 
250 1.48 0.32 
425 2.35 0.57 
310 1.96 0.49 
390 2.23 0.55 
650 3.1 0.68 
510 2.63 0.62 

690 3.23 0.69 

T -u 
7-c. vr 

25 680 3.20 0.69 

91 ‘111 

0.36 0.56 

0.3 0.63 
0.16 0.S 
0.28 fJ.49 
0.19 0.39 
0.33 0.60 
0.40 0.59 
0.34 O.SS 

0.32 0.46 
0.34 0.49 

models--even the highly idealized ones-require 
more complex anatyticai and numerical work that 
tends to obscure the message conveyed by the pre- 
ceding analysis. The mission of this section is to dcm- 
onstrate that some of these trade-offs can be rcdis- 
covered in more realistic, textbook-type, power plant 
descriptions. 

Consider for this purpose the ideal Brayton cycle 
sketched in Fig. 4. The working fluid (ideal gas with 
constant cP) is heated at constant pressure (PH) as it 
flows from the compressor outlet (1) to the turbine 
inlet (2). The compressor and the turbine process the 
fluid reversibly and adiabatically, i.e. isentropically. 
Between the turbine outlet (3) and the compressor 
inlet (4) the working fluid is cooled at constant pres- 
sure (I’,_). The power plant is sand~~hed between two 
temperature reservoirs, TH and TL, meaning that the 
maximum working fluid temperature can never exceed 
TH, and that the minimum working fluid temperature 
can never fall below T,_. The Brayton cycle is said to 
be ‘ideal’ (or endorcversible) because the only irrc- 
versibilities accounted for by this model are external 
to the space occupied by the working fluid itself. These 
irreversibilities are associated with the heat transfer 
from T,, to the heater tube (1) + (2), and with the 
heat transfer from the cooler (3) --t (4) to the low- 
temperature reservoir (TJ . 

To maximize the instantaneous power output I&’ is 
to minimize the entropy generation rate for the entire 
installation (cf. the Gouy-Stodola theorem on p. 24 
of ref. [I]) 

(44’) 

Note that this expression comes from writing 

where 

&, = nic,( T, - T,) and 0, = rirr,( T, - T, ). 
(46) 

Alternatively, the overall entropy generation rate. 
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800 I 
fli -.-.-.-.-,- 

‘Tq + T&/2 
-.-.-.-.-.- 

(T, + I-&‘2 
-.-.-._._._l 

1 . . 

0.3 
KS-s(T,,P,fl/c P 

Fro. 4. Ideal Brayton cycle aptknized for ma&mun power output (this Bgure was drawn to scaie for the 
caseT,=8ooK,TL= 300 K and the NH and NL values Listed inside each cycle). 

equation (#f, may be derived by adding the con- 
t~b~tions made by the two component that operate 
irreversibly 

where the flow rate liz is not necessarily constant. 
The overall entropy generation rate, equation (44), 

can be reshaped according to equations (49)-(53), to 
read 

The variation of the four corner tem~ratures 
T i, . . . , T4 is constrained by four addi~on~ relations 

(491 

XI Tz - = ;r3 = a,constaM. 
l-4 

(50) 

where the N’s represent the ‘number of heat transfer 
units’ of each heat exchanger 

x (e”H - 1) W - 1) 
eNx e%. _ 1 * 

(54j 

This expression shows that $n decreases mono- 
tonically as the pressure ratio (a) increases, i.e. as 
the cycle expands vertically and eliminates the irre- 
versibility plagued temperature gaps (note also that 
sgC” becomes zero in the limit a = X,/XL). Next, one 
can see that 2&,, depends on both Nn and Nr, however 
only one of these parameters constitutes a degree of 
freedom (see equation (53)). It can be shown that the 
minimization of L&, with respect to this single degree 
of freedom yields Nn = iVL, in other words, that 

Temperature ratio (51) depends only on the pressure 
ratio, a = (PH/PL)@-‘)lk, where k = c,Jc,, Finally, as 
a measure of the overall size of the heat exchanger 
equipment it is assumed that the total (h.4) is fixed, 
which is analogous to equation (3). In the present 
terminology the @4> constraint reads 

(56) 

where M is the dimensionless shorthand for the mass 
flow rate, A4 = rizc,/(~A). The same group (M) may 
be viewed as the inverse of the number ofheat transfer 
units of the two heat exchangers combined. At large 



1218 A. BEJAN 

flow rates (M >> l), the entropy generation rate 
mi~mum, equation (56), is practically independent of 
M, as the product M tanh (lJ4M) approaches 1 j4. 
On the other hand, &en.n,in decreases proportionally 
with M when M << 1. In conclnsion, there is a thermo- 
dynamic incentive for slowing down the working 
fluid as it bathes the two heat exchanger surfaces. In 
the limit M = 0 the extreme corners of the Brayton 
cycle match the imposed fuel and ambient tempera- 
tures, TX = Tr, and T, = r,. 

Either in terms of (&f) or number of heat transfer 
units, the optimum heat exchanger size distributives, 
equation (SS), verifies the conclusion reached earlier 
on the basis of a much simpler power plant model, 
equation (IX). The meaning of this design rule is illus- 
trated in the remainder of Fig. 4. At the optimum, the 
arithmetic average temperature of the heater and the 
cooler depend solely on the imposed temperatures and 
pressures 

Tkis eonelusion matches in spirit the earlier result that 
the power cycle must occupy a certain position on 
the temperature scale between LY,., and TL (Fig. 2). 
Regardless of whether equation (55) applies, the heat 
engine efficiency is a function of P,/P, only 

Therefore, although the cycle efficiency is independent 
of how (%A) is distributed among the two heat ex- 
changers, the entropy generation rate per unit @A) 
is minimized and the power output maximized when 
the cycle is positioned between 7’,* and T, in the 
manner indicated by equations (57) and (58). The 
Brayton cycle occupies an increasingly taller area 
on the T-s diagram as M decreases, i.e. the number of 
heat transfer units of both heat exchangers increase. 

CONCLUSIQN 

This study showed that the degree of thermo- 
dynamic imperfection of power plants can be 
anticipated based on a very simple model that retains 
only three sources of heat transfer ~rreve~ibility : the 
hot-end heat exchanger, the cold-end heat exchanger 
and the direct heat leak to the ambient. Ifthe designer 
maximizes the jnstantaneous power output then there 
are two important trade-offs to keep in mind. first, 

Curzon and Ahlborn’s optiinu~~ Carnot tempetatusc 
ratio and, second, the optimum balance between ahc 
sizes of the hot- and cold-end heat exchangers. Thcrc 
is also an interesting geometric constructions for locat- 
ing the optimum position of the power plant on the 
absolute temperature scale (Fig. 2). The cfbciency 01 
the power plant model is maximized if the availahlc 
investment is distributed optimally between the jobs of 
building external conductance and internal resistance. 

Overall, the study draws attention to the oppor- 
tunity for using themost basic heat transfer modelting 
and analysis in order to describe the irrcversihle opcr- 
ation of admittedly complicated engineering systems. 
This approach is hi~~ighted in a new treatise and 
graduate-level text on modern engineering thermo- 
dynamics [ 131. 

.4cki?au’le~qern~~6_This work was supported by the 
National Science Foundation (Thermal Systems and Engin- 
eering Program) through Grant No. CBT-87 I 1369. 

I. 

2. 

3. 

4. 

5. 

6. 

7 *_ 

8. 

9. 

10. 

Il. 

12. 

13. 

REFERENCES 

A. Bejan, Enrrapy ~~~~~r~~~~u~l i~~~u~g~ He& mrd EXf 
Flax;, p. 181. Wiley, New York (1982). 
F. L. Curzon and B. Ahlhorn, Eihciency of a Carnot 
engine at m~~irnurn power output, Am. .f: P&w. 43,X-- 
24 (1975). 
P, Salamon, A. N&an, 3. Andresen and K. S. Berry. 
~inirn~ entropy production and the optimization of 
heat engines, P&x Rm. A21,2115-2123 (1980). 
P. Salamon, Y. P. Band and 0. Kafri, Maximum power 
from cycling a working fluid, J. ilppl. f’+s. 53, 197-202 
(1982). 
P. Salamon and A. Nitzan, Finite time optimization ot 
a Newton’s law Carnot cycle, J. C‘hert?. P@. 74, 3546 
3560 (1981). 
B. Andresen, P. Salamon and R. S. Berry, Thermo- 
dynamics jn finite time, P&ic:v Tnt%rp 52.-- 70 (September 
1984). 
A. De Vos, Efficiency of some hear engines at rnaxi~~nl- 

Energy Use, Chap. 4. P&ti&Rah, Englewood”Cliffs, 
New Jersey (1982). 
T. J. Kotas. The Exwgy .~~~t~~~i~ oj T~~~~~l~~ Pfmr 
Anafvs,sir, cr. 73. Butterworths, London (1985). 
D. g. Spaldlng and E. W. Cole. Eqirreering Tllermo- 
dvnanzics. 3rd Edn, o. 209. Edward .4rnold. London 
(i973). 
G. M. Grifiths, CANDIJ--a Canadian success story. 
Ph_vs. Can. 30, 2-6 (1974). 
A. Chierici, Planning of a geothermal power ptant : tech- 
nical and economic principles, U.N. Conference on New 
Sources of Energy, New York, Vol. 3. pp. 299.31 I 
f19W. 
A. Bejan, ~~~~~n~~~ Engi~e~Tjrt~ T~e~~~)~vnu~i~.s. W ilcy. 
New York (1988), and S~lu~~~~s .~an~ial. 



Theory of heat transfer-irreversible power plants 1219 

THEORIE D’IRREVERSIBILITE DU TRANSFERT THERMIQUE APPLIQUEE A UN 
EQUIPEMENT ENERGETIQUE 

Rksmu%--Le degre observe ~im~rf~tion the~odyna~que dune inst~ation est explique a partir dun 
modele en tenant compte des irreversibilites dues ii trois sources : le cot& chaud de l’echangeur, le coti froid 
et la chaleur se perdant dans l’ambiance. En optirnisant la puissance instantanee delivrte, on montre qu’en 
plus du rapport de temperature optimum de Curzon et Ahlborn, ii existe aussi un equilibre optimum entre 
les dimensions des extr&nit~ chaude et froide de t’echangeur. On presente une construction graphique de 
la position optimale de l’iquipement energetique dans l’echelle de temperature absolue. L’efficacite est 
maximale quand l’investissement total est s&pare de fa9on optimale entre la conductance externe et la 
resistance therrnique inteme. Les donnbes sur l’efficacite d’unites existantes tombent dans le domaine privu 
theoriquement. Quelques points revel&s par la theorie sont illustres a travers l’analyse dune installation 

fonctionnant selon un cycle id&al de Brayton. 

THEORIE DER IRREVBRSIBLEN W~RME~BERT~GUNG IN KRA~ERKEN 

Zusammenfassung-Der durch irreversible Vorgiinge reduzierte Wirkungsgrad von Kraftwerken wird 
anhand eines stationlren Modeiis untersucht. Es lassen sich dabei drei Quellen fur Irreversibilitaten 
feststellen : die W~~etau~her am heil3en und kalten Ende der Anlage sowie der Warmeverlust der Anlage 
an die Umgebung. Zur Optimierung der momentanen Energieausbeute wurde von Curzon und Ahlborn ein 
optimales Temperaturverhlltnis ermittelt. Es wird gezeigt, dal3 zwischen der Griige der Warmetauscher 
am heigen und kalten Ende ebenfalls ein optimales Verhahnis besteht. Ein Diagramm zur grafischen 
E~ttlung der optimalen Lage von Kraftwerken beziiglich der absoiuten Tem~ratu~kala wird vorgestellt. 
Der Wirkungsgrad (energetisch oder exergetisch) wird dann maximal, wenn die gesamten Anlagekosten 
optimal zwischen der Wlrmed&mnung nach at&n und dem inneren therm&hen Widerstand aufgeteilt 
werden. Die Daten iiber den Wirkungsgrad von bestehenden Kraftwerken fallen in den Bereich der Werte, 
die aufgrund der theoretischen Berechnungen zu erwarten sind. Einige der Verbe~erungs-M6~lichkeiten, 
die aufgrund der Theorie aufgedeckt worden sind, werden anhand der Analyse eines idealen Kraftwerks 

nach dem Brayton-ProzeS verdeutlicht. 

TEOPWI 3HEPTOYCTAHOBKM HA OCHOBE HEOEPATMMbIX l-IPOIJECCOB lTEPEHOCA 

kHOTaIum--~epMO~HaMR9 HeHBei+JIbHOCTb CyUWCTByKIruAx 3HeprOyCTaHOBOK TpiUTyeTcn HiI 

ocnoBe r.fo.qemi CfasaoHapHoii 3neproycT=owi, zwo6paTnbudfi xapaKTep upoiwco~ B KOTO~O~~ 
o6azax rpe~ npawaaM: rennoo6weay c HarpeeaTeneM, c XOn~nHsrbmi~~~ H y’revxahi renna B orpy- 

xamluym cpeny. llyTeb4 btamibfu3aqw 3Hasema sb~xomiol rmHosemioii MOWHOCTU noKa3aH0, 9~0 

napnnyc onnih+~bHbs.i oTHo~exsieh+ TemepaTyp Kep3oeasiAnbfioprra cynrecr8ye~Ta~xce oimibfa- 

JIbHOe OTHO~e~He pa3MepOB HalJ.WBZ%TeJi$l H XO~O~b~a. Pa3pa6oTiiH l-pa@E¶eWfi MeTOg m%I OIipe- 
p(enemis onTmanbHor0 pacnonolgefm 3~eproyc~aHo~Ksf Ha a6comoTHoii uxKane TemepaTyp. IUIJJ 

(nepBbdi mm BTOPOE 3aKoHbI) hfaxcma.neH, Xorna cybsbfapwfi Bxnan O~THM~HO pacnpeneneH htemy 
esenuieii TennonpoBomwwo ii BH~T~~HHHM Ten.noBbrbf conpolaenemieM, ecrp0exm.w B sHeproycTa- 
HOBKy.~aHHbie Ii0 Knfi HMeIOII&EiXC% 3HeprOy~~OBOKCOB~~~T C ~~C~~H~M~ TeOpeTEPIeCKH. 

HeKoTopbxe noporoBbIe sHareHm, pammamme ~eope~mmcsi, UwnocTpnpywTcn Ha wneanbiioii 
hfaunuie c wucnobi BpakoHa. 


